Computational Experience with a New Class of Convex Underestimators: Box-constrained NLP Problems

نویسندگان

  • Ioannis G. Akrotirianakis
  • Christodoulos A. Floudas
چکیده

Abstract. In Akrotirianakis and Floudas (2004) we presented the theoretical foundations of a new class of convex underestimators for C2 nonconvex functions. In this paper, we present computational experience with those underestimators incorporated within a Branch-and-Bound algorithm for box-conatrained problems. The algorithm can be used to solve global optimization problems that involve C2 functions. We discuss several ways of incorporating the convex underestimators within a Branch-and-Bound framework. The resulting Branch-and-Bound algorithm is then used to solve a number of difficult box-constrained global optimization problems. A hybrid algorithm is also introduced, which incorporates a stochastic algorithm, the Random-Linkage method, for the solution of the nonconvex underestimating subproblems, arising within a Branch-and-Bound framework. The resulting algorithm also solves efficiently the same set of test problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs

We present a new class of convex underestimators for arbitrarily nonconvex and twice continuously differentiable functions. The underestimators are derived by augmenting the original nonconvex function by a nonlinear relaxation function. The relaxation function is a separable convex function, that involves the sum of univariate parametric exponential functions. An efficient procedure that finds...

متن کامل

Monomial-wise optimal separable underestimators for mixed-integer polynomial optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard appr...

متن کامل

Convex Underestimation of C2 Continuous Functions by Piecewise Quadratic Perturbation

Clifford A. Meyer and Christodoulos A. Floudas Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA Abstract This paper presents an efficient branch and bound approach to address the global optimization of constrained optimization problems with twice differentiable functions. A lower bound on the global minimum is determined via a convex nonlinear programming probl...

متن کامل

An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems

Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...

متن کامل

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative methodology based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2004